Radial Wavefunction of a Hydrogen Atom
Gibson T. Maglasang and John Paul Aseniero
In this article, we outlined the necessary steps in calculating the radial wavefunctions [eq]R_{nl}[/eq] for the Hydrogen atom. Thus, the radial wavefunctions particularly [eq]R_{30 [/eq], [eq]R_{31 [/eq] and [eq]R_{32 [/eq] are easily obtained without bothering to normalize it.
We use the formula below to find the wavefunction,
[eq]R_{nl}=\frac{1}{r}\rho^{l+1}e^{-\rho}\nu(\rho),[/eq] ( 1)
where
[eq]\nu(\rho)=\sum_{j=0}^{\infty}c_j\rho^j,[/eq] (2)
while [eq]c_j[/eq] is determined by the recursion formula given by,
[eq]c_{j+1}=\frac{2(j+l+1-n)}{(j+1)(j+2l+2)}c_j,[/eq] (3)
and
[eq]\rho=\frac{r}{na}.[/eq] (4)
(i) Now, finding [eq]R_{30}[/eq]
Using equation 1, we need to solve first the coefficient [eq]c_j[/eq] from (eqn. 3), with [eq]n=3[/eq] and [eq]l=0[/eq].
[eq]c_1=\frac{2(0+1-3)}{1(0+0+2)}c_0=-2c_0[/eq]
[eq]c_2=\frac{2(1+1-3)}{2(1+0+2)}c_1=-\frac{2}{3}c_0[/eq]
[eq]c_3=\frac{2(2+1-3)}{3(2+2)}c_2=0.[/eq]
Knowing the value of [eq]c_j[/eq], (eqn. 2) can now be easily determined,
[eq]\nu(\rho)=c_0\rho^0+c_1\rho^1+c_2\rho^2+c_3\rho^3.[/eq] (5)
Substituting the value of the calculated coefficients to (eqn. 5), we then have
[eq]\nu(\rho)=c_0-2c_0+\frac{2}{3}\rho^2c_0.[/eq] (6)
Thus,
[eq]R_{30}(\nu)=\frac{1}{r}\Big(\frac{r}{3a}\Big)e^{-\rho}[c_0-2c_0+\frac{2}{3}c_0\rho^2].[/eq] (7)
Plugging in (eqn. 4) to (eqn. 7), we finally have
[eq]R_30=\frac{c_0}{3a}\bigg[1-2\Big(\frac{r}{3a}\Big)+\frac{2}{3}\Big(\frac{r}{3a}\Big)\rho^2\bigg]e^{-(r/3a)}.[/eq]
Following the same process in (i), the rest of the wavefunctions are just straightforward.
(ii) For [eq]R_{31}[/eq]
Determining first the coefficients, with [eq]n=3[/eq] and [eq]l=1[/eq],
[eq]c_1=\frac{2(1+1-3)}{1(0+2+2)}c_0=-\frac{1}{2}c_0[/eq]
[eq]c_2=\frac{2(1+1+1-3)}{2(1+2+2)}c_0=0[/eq]
[eq]c_3=0[/eq]
Then,
[eq]\nu(\rho)=c_0-\frac{1}{2}c_0\rho[/eq].
Thus,
[eq]R_{31}=\Big(\frac{r}{9a^2}\Big)\bigg[1-\frac{r}{6a}\bigg]e^{-r/3a}[/eq]
(iii) We have the coefficients for [eq]R_{32}[/eq] with [eq]n=3[/eq] and [eq]l=2[/eq],
[eq]c_1=\frac{2(2+1-3)}{1(4+2)}c_0=0[/eq]
[eq]c_2=0[/eq]
[eq]c_3=0[/eq]
Using again (eqn. 1), we have
[eq]R_{32}=\frac{r^2}{27a^3}e^{-r/2a}c_0[/eq]
We finally generated the radial wavefunctions ([eq]R_{30}[/eq], [eq]R_{31}[/eq], [eq]R_{32}[/eq]) for the hydrogen atom which is the main aim of this paper.
January 24th, 2012 at 12:29 am
SEO Coach…
[…]Radial Wavefunction of a Hydrogen Atom | Quantum Science Philippines[…]…
May 4th, 2012 at 11:05 am
what is the value of $c_0$ ?