The Recursion Relation for larger n | Quantum Science Philippines
Quantum Science Philippines

The Recursion Relation for larger n

By Kim S. Ponce, MS Physics I, MSU-IIT




Given the recursion relation: a_{n+2} = \frac{2n+1-\varepsilon}{(n+2)(n+1)}a_{n}. (a) Find  \frac{a_{n+2}}{a_{n}}  for large n. (b) Compare result from (a) to \xi^{n}e^{\xi^{2}}.




Starting with the recursion relation,


\begin{array}{lll} a_{n+2}& = &\frac{2n+1-\varepsilon}{(n+2)(n+1)}a_{n}\end{array}


\begin{array}{lll} \frac{a_{n+2}}{a_{n}}& = &\frac{2n+1-\varepsilon}{(n+2)(n+1)}\end{array}


When n\rightarrow\infty, the expression above reduces to


\begin{array}{lll} \frac{a_{n+2}}{a_{n}}& = &\frac{2n}{n^{2}}\\ \\& = &\frac{2}{n}\end{array}


Now, we compare this to \xi^{n}e^{\xi^{2}} which can be rewritten in the form:


\begin{array}{lll} \xi^{m}e^{\xi^{2}}& = &\sum_{l=0}^{\infty} \frac{\xi^{2l}}{l!}\xi^{m} \end{array}


since e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}  and thus,


\begin{array}{lll} \xi^{m}e^{\xi^{2}}& = &\sum_{l=0}^{\infty} \frac{\xi^{2l+m}}{l!} \end{array}


Finding for a_{n} and a_{n+2} , a_{n} is the coefficient of \xi^{n} = \frac{1}{l!} with n = 2l+m. So, l= \frac{n-m}{2}. Thus, a_{n+2} = \frac{1}{(\frac{n+2-m}{2})!}.


Now, we get the same ratio from (a) that is,


\begin{array}{lll} \frac{a_{n+2}}{a_n}& = &\frac{\frac{1}{(\frac{n+2-m}{2})!}}{\frac{1}{(\frac{n-m}{2})!}}\\ \\& = &\frac{(\frac{n-m}{2})!}{(\frac{n+2-m}{2})!}\\ \\& = &\frac{(\frac{n-m}{2})!}{(\frac{n+2-m}{2})(\frac{n-m}{2})!}\\ \\& = &\frac{1}{\frac{n+2-m}{2}}\end{array}


If we let n\rightarrow\infty,


\begin{array}{lll} \frac{a_{n+2}}{a_n}& = &\frac{2}{n}\end{array}

which is equal to that of the result from (a).

Leave a Reply